

Duct Controller and Sensor SDC2-MOD

The SDC2 is a programmable controller and sensor with Modbus fieldbus connection. Each control loop may use 2 PI sequences and 2 binary stages. The SDC2 comes with a built in RS485 communication interface that allows peer-to-peer communication with an operation terminal such as OPT1-(2TH)-VC. Complete parameter sets may be copied by use of an accessory called AEC-PM2 or exchanged with a PC using an RS485-USB converter and the Easyset program. The SDC2 uses the universal X2 operating system.

Applications

- Ventilation control
- Air measurement
- Zone control
- VAV control

Functions

- Modbus Communication via RS485 RTU or ASCII
- Two universally configurable control loops:
 - Functions for dehumidifying, set point shift and cascade control
 - Multiple auxiliary functions; heat-cool auto changeover, automatic enable, set point compensation
 - Free heating and cooling with economizer function based on enthalpy or temperature
 - Differential, averaging, min and max functions, enthalpy and dew point calculations
 - o Transmitter function for sensors and set points
- Universal analog outputs (VDC, mA) and one relay with a normally open and a normally closed contact (SPDT)
- 8 freely assigned alarm conditions, selectable state of outputs on alarm condition
- Password protected programmable user and control parameters
- Measures temperature, humidity, CO2 and VOC

Ordering

Model	Item	Loop	UI	DO	AO	Functions	A01	A02
SDC2-16-TH-210.102U-MOD-1	40-300172	2	1	1	2	Temperature- and humidity sensor	Temp.	RH
SDC2-16-THC-210.102U-MOD-1	40-300174	2	1	1	2	Temperature-, humidity and CO2 sensor	CO2	RH
SDC2-16-THQ-210.102U-MOD-1	40-300162	2	1	1	2	Temperature-, humidity- and VOC sensor	VOC	RH
SDC2-16-THCQ-210.102U-MOD-1	40-300165	2	1	1	2	Temperature-, humidity-, CO2- and VOC sensor	CO2	VOC

AO1 and AO2 are the analog outputs of the controller/sensor. The device is pre-programmed ex works as a transmitter. The sensors are assigned to the analog outputs according to the table.

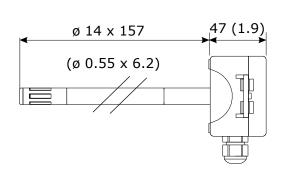
Model	Item	Description		
OPC2-S 40-500109		Display option for SDC2 and SOC2 devices		
AEC-PM2 40-500130		Plug-In memory module		

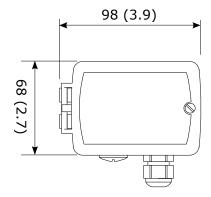
A large range of remote operation terminals may be found on our website. All -VC operation terminals work with this controller.

Technical specifications

Important notice and safety advice

This device is for use as an operating controller or sensor. It is not a safety device. Where a device failure could endanger human life and property, it is the responsibility of the client, installer and system designer to add additional safety devices to prevent such a device failure. Ignoring specifications and local regulations may cause equipment damage and endangers life and property. Tampering with the device and misapplication will void warranty.


Power supply	Power requirements	24 VAC ±10%, 50/60 Hz, 1534 VDC		
	Power consumption	SELV to HD 384, Class II, 48VA max Max. 10 VA		
	Electrical connection	Screw terminal connectors for wire 0.751.5 mm ² (AWG 2016)		
Signal inputs	Temperature sensor	Bandgap sensor		
Signal iliputs	Range	-4070 °C (-40158 °F)		
	Measuring accuracy	See Figure 1 under chapter sensors		
	Repeatability	± 0.1 °C, ± 0.2 °F		
	Humidity sensor	Capacity sensor element		
	Range	0100% RH		
	Measuring accuracy	See Figure 2 under chapter sensors ± 1%		
	Hysteresis Repeatability	± 170 ± 0.1%		
	Stability	< 0.5% / year		
	CO2 sensor	Non-dispersive infrared (NDIR) waveguide technology with ABC		
	602 3611361	automatic background calibration algorithm		
	Response time (90%)	2 Minutes		
	Measurement range	0 - 2000 ppm		
	Repeatability	\pm 20 ppm \pm 1 % of measured value		
	Accuracy	\pm 40 ppm \pm 3 % of measured value		
	Pressure dependence	+ 1.6% reading per kPa deviation from normal pressure, 100 kPa		
	VOC sensor	MEMS metal oxide sensor with ABC automatic background		
	Sensing range: TVOC (relative)	calibration algorithm 0 – 2000 ppb		
	CO2 equivalents (relative)	400 – 2000 ppm		
	Module (Telative)	Automatic baseline correction		
	Passive input	UI6, Passive Temperature NTC or open contact		
	Type:	NTC (Sxx-Tn10) $10k\Omega$, Type 2		
	Range	-40100 °C (-40212 °F)		
Signal outputs	Analog outputs	AO1 to AO2		
	Output signal	DC 010 V or 020 mA		
	Resolution	9.76 mV or 0.019 mA (10 bit)		
	Maximum load	Voltage: $\ge 1k\Omega$ Current: $\le 250\Omega$		
	Relay outputs: AC Voltage DC Voltage	048 VAC, full-load current 2A 030 VDC, full-load current 2A		
	Insulation strength between relays contacts			
	and system electronics:	1500V AC to EN 60 730-1		
	between neighbouring contacts:	800V AC to EN 60 730-1		
Network	Hardware interface	RS485 in accordance with EIA/TIA 485		
	Max nodes per network	128		
	Max nodes per segment	64 (Vector devices only)		
	Conductors	Shielded Twisted Pair (STP) cable		
	Impedance	100 - 130 ohm		
	Nominal capacitance	100 pF/m 16 pF/ft. or lower		
	Galvanic isolation	The communication circuitry is isolated		
	Line termination	A line termination resistance (120 ohm) shall be connected		
		between the terminals (+) and (-) of the furthermost node of the network		
	Network topology	Daisy chain according EIA/TIA 485 specifications		
	Recommended maximum length per chain	1200 m (4000 ft.)		
Modbus	Communication standard	Modbus (www.modbus.org)		
	Communication standard	19200 baud rate, RTU 8 data bits,		
	Default setting	1 even parity bit, 1 stop bit		
	Communication speed	4800, 9600, 19200, 38400		
	Protocol: Data bits	RTU - 8 data bits, ASCII – 7 data bits,		
	Parity – stop bit	no parity – 2 stops, even or odd parity – 1 stop		
	rarity stop bit	no parity 2 stops, even or odd parity 1 stop		



Technical specifications continued

Connection to remote terminal	Hardware interface Cabling	RS485 in accordance with EIA/TIA 485 Twisted pair (STP) cable			
Environment	Operation Climatic conditions Temperature Humidity	To IEC 721-3-3 class 3K5 050 °C (32122 °F)			
	Transport & storage Climatic conditions Temperature Humidity Mechanical conditions	<85 % RH non-condensing To IEC 721-3-2 and IEC 721-3-1 class 3K3 and class 1K3 -2570 °C (-13158 °F) <95 % RH non-condensing class 2M2			
Standards	conformity EMC directive Low voltage directive Product standards: Automatic electrical controls for household and similar use	2014/30/EU 2014/35/EU EN 60 730 -1			
	Electromagnetic compatibility for industrial and domestic sector	Emissions: EN 60 730-1 Immunity: EN 60 730-1			
	Degree of protection Pollution class	IP30 to EN 60 529 with CO2 / VOC sensor IP60 to EN 60 529 without CO2 / VOC sensor II (EN 60 730-1)			
	Safety class	III (IEC 60536)			
	Overvoltage category	II (EN 60 730-1)			
General	Material Dimensions (H x W x D) Weight (including package)	Fire proof ABS plastic (UL94 class V-0) 47 x 157 x 68 mm (1.9 x 6.2 x 2.7 in) 380g (13.4 oz)			

Dimensions, mm (inch)

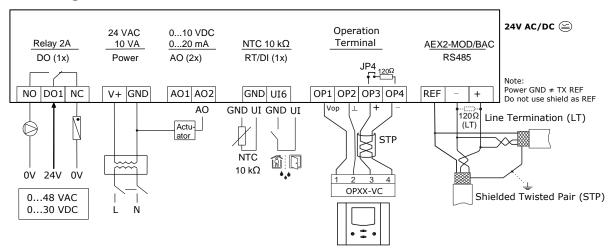
Selection of actuators and sensors

Temperature sensors

Use \dot{V} vector Controls NTC sensors to achieve maximum accuracy: SDB-Tn10-20 (duct), SRA-Tn10 (room), SDB-Tn10-20 + AMI-S10 as immersion sensor.

Actuators

Choose modulating actuators with an input signal type of 0/2-10 VDC.


3-point actuators with constant running time are recommended.

Binary auxiliary devices (e.g. pumps, fans, on/off valves, humidifiers, etc.)

Do not directly connect devices that exceed specified limits in technical specifications – observe startup current on inductive loads.

Connection diagram

LED-indicators

A status LED is located in the controller housing. During normal operation the LED blinks briefly once every 5 seconds. If there is an alarm or fault condition it will blink every second. See also installation sheet point number D. The function of the system LED is explained in the engineering manual.

The Modbus slave features a green LED and a red LED for indication of traffic on the RS-485 bus. The green LED is lit when an incoming packet is received, and the red LED is lit when an outgoing packet is transmitted to the bus. At power-up, both LED blink twice simultaneously as a sign of the boot process being completed. A constantly lit LED serves as an indication of a fault condition in the reception or sending process.

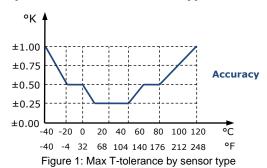
Installation

See installation sheet no:

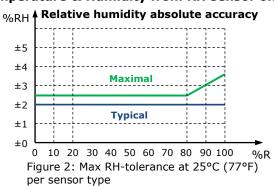
• SDC2-210 70-000664

Wire type

An EIA-485 network shall use shielded, twisted-pair cable for data signalling with characteristic impedance between 100 and 130 ohms. Distributed capacitance between conductors shall be less than 100 pF per meter (30 pF per foot). Distributed capacitance between conductors and shield shall be less than 200 pF per meter (60 pF per foot). Foil or braided shields are acceptable.


Maximum length

The maximum recommended length per segment is 1200 meters (4000 feet) with AWG 18 (0.82 mm2 conductor area) cable.



Sensors

Temperature sensors on -T- types

Temperature & Humidity from RH sensor on -HT- type

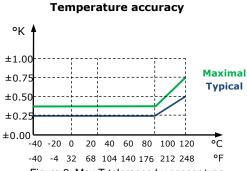


Figure 3: Max T-tolerance by sensor type

CO2 sensor for -C-types

The CO2 concentration is measured through non-dispersive infrared (NDIR) waveguide technology with ABC automatic background calibration algorithm. The applied measuring technology guarantees excellent reliability and long-term stability. The microprocessor samples the CO2 once per second. It calculates an averaging signal over a present number of seconds and generates the output signal.

Automatic baseline calibration ABC

The ABC background calibration constantly supervises the measured CO2 concentrations. The calibration function expects the CO2 values sink to 400 ppm when the room is not occupied. Over a period of several days the controller tries to reach this value step by step through recalibration of 30ppm per day max. In order to reach the given accuracy, it is required that the Sensor is for at least 3 weeks in operation.

Note

The ABC calibration works only in those applications where the CO2 concentration sinks regularly to fresh air levels of 400 ppm. For special applications such as green houses, animal farms, etc. the ABC calibration should be deactivated and the sensor should be manually calibrated. This deactivation is handled by a technician.

VOC (Air Quality Sensor) for -Q-types

Reliable evaluation of indoor air quality:

The sensing element used is a MOS (metal oxide semiconductor) based gas sensor component. It was specifically designed for a broad detection of reducing gases such as VOCs (volatile organic compounds) and CO (carbon monoxide) associated with bad air quality. The sensor has to run at least 24h for reliable VOC values. It has the following features:

- Sensing range: 400 2000 ppm CO2 equivalents and 0 2000 ppb TVOC equivalents
- High sensitivity and fast response
- Module with automatic baseline correction

Note

The VOC sensor is recommended as an actuator for multi-stage ventilation systems. The VOC values can be classified into the following air quality classes:

TVOC concentration [ppb]	0 - 60	60 - 200	200 - 610	610 - 1900	1900 - 2000
air quality class (EPA)	1	2	3	4	5
air quality	very good	good	moderate	unhealthy for	unhealthy
			1	sensitive groups	

X2 Functional Scope

The controller has the following X2 functions and elements:

Group	Modules	QTY	Description
UP			User and display parameters
	01U to 05U	5	Sensor inputs for temperature, humidity, CO2 and VOC
UI	06U	1	Universal input for RT/DI
07U to 10U 4		4	Virtual inputs for operation terminals, bus modules or special functions
AL	1AL to 8AL	8	Alarm conditions
LP	1L to 2L	2	Control loops
Ao	1A to 2A	2	Analog outputs for mA, VDC
FAN	1F	1	Fan or lead lag modules, 1 to 3 fan speeds, up to 3 switching lead-lag stages each
do	1d	1	Binary output with a normally open and a normally closed (SPDT) relays contact
	1FU	1	Remote Enable: Activation of the controller based on signal and alarm conditions
	2FU	1	Change Operation Mode: Switching occupied and unoccupied with control signals
FU	3FU	1	Heat/Cool Change: Switching heating and cooling based on a control signal
	4FU	1	Setpoint Compensation: Summer/winter compensation of setpoint
	5FU	1	Economizer (free heating or cooling due to the condition of outside and room air)
Co			Communication (if a communication module is available)
COPY			Copying complete parameter sets between run, default and external memory with up to 4 memory locations (AEC-PM2)

Operation manual and configuration

This controller uses the latest generation X2 operating system. Detailed operating instructions for all devices equipped with this operating system can be downloaded here

http://www.vectorcontrols.com/products/x2

Also available are programming instructions for technicians and an application database.

The device can be fully configured using EasySet. EasySet may be downloaded free of charge from www.vectorcontrols.com.

Smart Sensors and Controls Made Easy!

Quality - Innovation - Partnership

Vector Controls LLC
USA
infous@vectorcontrols.com
www.vectorcontrols.com

