Programmable operation terminal for MODBUS OPA2-MOD

General description
The OPAR-MDD is a programmable operation terminal with an isolated RS485 MODBUS communication.
The operation terminal is communicating in slave mode. It may be used to control fan coil or VAV zones. Up
to 5 zones may be controled with one terminal
Features

- RS485 2-wire MODBUS standard in accordance to EIATIA 485
- Slave type of communication
- Supports up to 127 nodes on one network
- Galvanic isolated bus connection
- Gavvanic isolated bus connection
- RTU with CRC16 checksum
- ASCII with LRC checksum
- Parity: No parity, odd or even parity.

- LED indicators

Communication Specification

Communication standard	Modbus (www.modbus.org)
Default setting	19200 Baudrate, RTU 8 data bits, 1 even parity bit, 1 stop bit
Communication speed	4800, 9600, 19200, 38400
Protocol	RTU with CRC16 checksum ASCII with LRC checksum
Parity bit	no parity, even parity, odd parity

By default, RTU uses 8 data bits, 1 parity bit with even parity and 1 stop bit; ASCII mode uses 7 data bits,
parity bit with even parity, and 1 1 stop bit parity bit with even parity, and 1 stop bit.
Both modes support "No Parity" mode, in these cases a ${ }^{\text {nds }}$ stop bit is used to keep the byte length (11 bit tor
RTU and 10 bit for ASCll, including the Start and Stop bits) unchanged in accordance with the Modbus specification.

03 (0x03): Read multiple registers
06 (0x060: Write single register
06 (0x06): Write single register
16 (0x10): Write multiple register
In commands 03 and 16 the allowed number of registers ranges from 1 to 32 . Athough Modbus specification would allow more registers to be read and written, a maximum of 32 Modbus registers are supported in on
packet. One Modbus register is 16 bits wide. The Modbus slave transmits the values as siged 16 bit packet. One Modbus register is 16 bits wide. The Modbus slave transmits the values as signed 16 bit
integers. The least significant digitit of the transmitted number is always the first digit below the decimal poin and
anghis result in the following range of numbers that the slave module is able to transmit: from -9999.9 to

In an event of an out-of-range command addressing or an unsupported command, the Modbus slav
responds with an exception message according to the Moodbus specification.

Model	Item\#	Display	RT	DI	rH	Description
OPA2-MOD	40-50 0014	yes	1	2	.	Modbus communication module with one internal temperature and one external temperature input plus two binary inputs.
PA2-MOD	40-50 0053	yes	1	2	1	As above with internal humidity sensor 3\% accuracy.

Vector
Operation terminal for MODBUS OPA2-MOD
Vector

Technical Specification

mportant notice and safety advice

This device is for use as operating controls. It is not a safety device! Where a device failure endangers human life
and/or property, it is the responsibility of the client, installer and system designer to add additional safety devices to and/or property, it it the responsibility of the client, installe
prevent a system failure caused by such a device failure.
lgnoring specifications and local regulations may cause equipment damage and endangers life and property.
Tampering with the device and misapppication will vous equipmen

Dimensions [mm](in)

Line polarization: Line polarization:
The deve perce neds line polarization. One pair of
resistors may be connected on the RS-485 resistors may be connected on the RS-485
balanced pair: balanced pair:
-a Pull-Up Resistor to a 5 V Voltage on D1
circuit. Circuit
-a Pul-Down Resistor to the common circuit on
Do circuit. This should be done only once at the Do circuit. This should be done only once at the master only. The value of those resistors
be between 450 Ohms and 650 Ohms. 650 be between 450 Ohms and 650 ohms. 650
Ohms resistors value may allow a higher number Ohms resistors value may allow

Note:
Power GND \neq Modbus common!

On last node on either end of bus only

scription:		
GND	Power supply:	${ }^{\text {OV]; common for power supply }}$
24 V	Power supply:	24 V AC or 24 V DC
D11	Passive input:	Binary input, keep open or switch to ov
D12	Passive input:	Binary input, keep open or switch to oV
RT1	Passive input:	NTC 10k Ω @ $25^{\circ} \mathrm{C}\left(777^{\circ} \mathrm{F}\right)$ or open conta
$\stackrel{(+)}{(-)}$	RS485 RS485	Modbus +
REF	RS485	Modbus Re

Mounting location

On an easy accessible interior wall, approx. $1.5 \mathrm{~m}\left(4.5^{\prime}\right)$ above the floor in an area of
Avoid exposure to to direct sunlight or other heat sources, e.g. the area above radiators and

- Avoid exposure to direct sunifgher
- Avoid locations behind doors, outside walls and below or above air discharge gis

Installation

1. Connect the wires to the terminals of the power case according to wiring diagram
2. Install the mounting plate to the flush mounting box. Make sure that the nipple with the front holding screw is facing to the ground. Make sure the mounting screw heads do not stand out
3. $\quad \begin{aligned} & \text { more than } 5 \mathrm{~mm}\left(0.2^{\prime \prime} \text {) of the surface of the mounting plate. }\right. \\ & \text { Slide the two latches located on the top of the front part into the hooks at the upper side of }\end{aligned}$
4. the mounting plate.
5. Carefully lower the front part until the interconnector reaches the mounting-plate. Continue

Display and Operation

Operation mode symbols		Control symbols	
	Comfort (occupied)	Heating (reverse) active	
	Standby (unoccupied):		Cooling (direct) active
OFF	Energy hold off	Manual overide,	
		※	Fan active

Standard display in OFF mode

- Active when UP/DOWN or OPTION have not been pressed for 30 seconds and unit is in Contents
Standard display in ON mode
- Active when Up/Down or OPTION have not been pressed for 30 seconds and unit is in ON Contents may be chosen.
Set display
Active when changing set points. Large digits show input value. Small digits show set point.
Vertical bars show output value. All values and allowable set point ranges may be chosen.
Symbols
Select which symbol to show. Active symbols in OFF mode are selected by bitmap.
Power failure
Error message
All parameters and set points are memorized and do not need to be re-entered.
Erri: A communication timeout occurred. The operation terminal did communicate successstully fo
the time period defined with CP18 (1022). Verity wiring or operation of Modbus master device.
To disable this error: set CP18 (1022) to 0.
$\begin{array}{ll}\text { Err2: } & \text { The selected sensor is damaged or missing. } \\ \text { NA: } & \text { The selected sensor is not enabled }\end{array}$
NA: The change of setpoint or operation mode is disabled or the remote disable The change of setp
function is active.

Configuration parameters for firmware version 1.2

The OPA2-MOD can be fine-tuned with a simple parameter setup routine. The parameters can be changed on the Access to parameters
The parameters can be changed as follow

1. Press UP/DOWN buttons simultaneously for three seconds. Press the OPTION button to start login.

CODE is shown on the upper digits.
3. Select 009 using UP/DOWN buttons.
4. Press OPTION atter selecting the correct code. Now the Software Version and Revision is displayed
5. Select the parameters by pressing the UP/DOWN buttons. Press the OPTION button to adjust the value with
6. Press the POWER to leave the menu

Setup parameters

Parameter	Description	Range	Default
CP 00	Communication address (must be unique in network)	$1 . .255$	1
CP 01	$\begin{aligned} & \hline \text { Baud rate: } \\ & 0=19200 \\ & 1=4800 \\ & 2=9600 \\ & 3=19200 \\ & 4=38400 \\ & \hline \end{aligned}$	0.... 4	0
CP 02	Parity mode: $0=$ No Parity, 1 =Even Parity, 2 = Odd Parity	0...1	1
CP 03	Mode of communication : $0=$ RTU, $1=$ ASCII	$0 . . .1$	0
CP 04	Allow changing of communication address through broad cast command $0=$ Not allowed, $1=$ Allowed	0...1	0
CP 05	Total number of groups $0=$ one group with fan speed selection on right key $1=$ one group $2=$ two groups $3=$ three groups $5=$ five groups	0... 5	1
CP 06	Setpoint change enable $0=$ disabled, 1 = enabled	0...1	1
CP 07	Operation mode change ON/OFF enabled $0=$ disabled, $1=$ enabled	0...1	1
CP 08	Operation mode change occupied / unoccupied enabled $0=$ disabled, $1=$ enabled	0...1	1
CP 09	$24 \mathrm{~h} / 12 \mathrm{~h}: 0=24 \mathrm{~h}, 1=12 \mathrm{~h}$ (AM/PM)	0...1	0
CP 10	AM / PM flag (applies if CP 09 is $1-12 \mathrm{~h}$ mode) $0=\mathrm{AM}, 1=\mathrm{PM}$	0...1	0
CP 11	Celsius/Fahrenheit, $0=$ Celsius, $1=$ Fahrenheit	$0 . .1$	0
CP 12	Timeout in seconds to idle mode	1...255	30
CP 13	Idle mode, $\mathbf{0}=$ disabled, 1 = enabled If enabled shows a specific screen if no key is pressed for the time defined in CP12	0...1	0
CP 14	Maximum number of FAN speeds This setting applies for CP05 $=0$ (one group with fan speed).	1...4	3
CP 15	Humidity sensor Offiset	-12,7...12.7\%	0
CP 16	Internal NTC sensor Offset	$-12.7 . .12 .7^{\circ} \mathrm{C}$	0
CP 17	External NTC sensor Offset	-12.7...12.7 ${ }^{\circ} \mathrm{C}$	0
CP 18	Modbus communication timeout: If there is no communication within the amount of seconds specified here, "Er1" is shown on the small digits. Setting the value to " 0 " disables this feature.	0...1000s	60s
CP 19	Delay for remote disable function. Useful for key card switches or window contacts connected to digital inputs. This function is activated in the setup for digital inputs.	0...255s	10s
CP 20	Delay for occupied/unoccupied changeover contact. Defines the timeout required to switch to unoccupied mode while there is no activity signaled by the motion detector connected to one of the digital digital inputs.	0...9999min	10 min

Address list
Terminal setup

Address	Type	RW	Contents
1000	8bit	R	Hardware version / type
1001	8bit	R	Software version
1002	8bit	R	Software revision
1003	8bit	RW	Communication address (must be unique in network)(factory default is " 1 ")
1004	Selection	RW	$\begin{aligned} & \text { Baud rate: } \\ & 0=19200 \\ & 1=4800 \\ & 2=9600 \\ & 3=19200 \\ & 4=38400 \\ & \hline \end{aligned}$
1005	bit	RW	Parity mode: $0=$ No Parity, $1=$ Even Parity, $2=$ Odd Parity
1006	bit	RN	Mode of communication : $0=$ RTU, $1=$ ASCII
1007	bit	RW	Allow changing of communication address through broad cast command. (will reset automatically after 30 seconds) = Not allowed, 1 = Allowed
1008	selection	RW	Total number of groups $0=$ one group with fan speed selection on right key 1 = one group $2=$ two groups = three groups 4 = four groups 5 = five groups
1009	bit	RN	Setpoint change enable $0=$ disabled, 1 = enabled
1010	bit	RW	Operation mode change ON/OFF enabled 0 = disabled, $1=$ enabled
1011	bit	RW	Operation mode change occupied / unoccupied enabled 0 = disabled, 1 = enabled
1012	BCD	RW	Clock with hours and minutes in BCD format
1013	bit	RW	$24 \mathrm{~h} / 12 \mathrm{~h} \mathrm{Clock} \mathrm{mode:} 0=24 \mathrm{~h}, 1=12 \mathrm{~h}$ (AMPM)
1014	bit	RW	AM/PM flag: $0=A M, 1=P M$
1015	bit	RW	Celsius/Fahrenheit: $0=$ Celsius, $1=$ Fahrenheit
1016	byte	RW	Timeout in seconds to idle mode. (1... 255 seconds)
1017	bit	RW	Idle mode, $0=$ disabled, $1=$ enabled If enabled shows a specific screen if no key is pressed for the ime defined in 1016
1018	byte	RW	Maximum number of FAN speeds (1...4) (3) \qquad with fan speed" with fan spe $(1008=0)$.
1019	byte signed	RW	Humidity sensor user programmable offset (12,7...0...12,7 \%)
1020	byte signed	RW	Internal NTC user programmable offset ($\left.-12,7 . .0 . . .12,7^{\circ} \mathrm{C}\right)$
1021	byte signed	RW	External NTC user programmable offset ($-12,7 \ldots 0 . .12,7^{\circ} \mathrm{C}$)
1022	16bit	RW	Modbus timeout for Err in in seconds. (0...60... 1000 seconds) If there is no communication within the amount of seconds specified here, "Err1" is shown on the small digits. Setting the value to "0" disables this feature.
1023	byte	RW	Remote disable delay for digital inputs ($0 \ldots . .10 \ldots 255$ seconds) Useful for key card switches or window contacts connected 0 digital inputs. This function is activated with address 10300 /or 10400.
1024	16 bit	RN	Occupied/unoccupied changeover delay for digital inputs (0...10... 9999 minutes) efines the timeout required to switch to unoccupied mode while there is no activity signaled by the motion detector activated with address 10300 /or 10400.

Operation state, symbols \& alarms

Address	Type	R/W	Contents
100	8bit	R	"Something Changed" flag. Gets the group ID value whenever a setpoint gets changed in a group. Is always written to " 0 " on any write.
2000	bit	RW	$\begin{aligned} & \begin{array}{l} \text { Operation state ON } / \text { OFF } \\ 0=0 \text { OFF } \\ 1=0 N \end{array} \\ & \hline \end{aligned}$
2001	bit	RW	$\begin{aligned} & \text { Operation state occupied / unoccupied } \\ & 0=\text { Unoccupied } \\ & 1=\text { Occupied } \end{aligned}$
2002	bit	RW	Maximum number of fan speeds (1...4) (3)
2003	8bit	RW	Actual fan speed (0-4)
2004	bit	RW	Show fan (0)
2005	bit	RW	Show alarm symbol (0)
2006	bit	RW	Show alarm string (0)
2007	bit	RW	Show heat (0)
2008	bit	RW	Show cool (0)
2009	bit	RW	Show occupied (0)
2010	bit	RW	Show unoccupied (0)
2011	16 bit	RW	Show arrow 0-10 LSb = Arrow 1 on the left (0)
2012	8bit (ASCII)	RW	text string alarm letter 1:
2013	$\begin{aligned} & \text { mbit } \\ & (\text { ASCII) } \end{aligned}$	RW	text string alarm letter 2:
2014	$\begin{aligned} & \text { Rit } \\ & \text { (ASCII) } \end{aligned}$	RW	text string alarm letter 3:
2015	8bit (ASCII)	RW	text string alarm letter 4:
2016	bit	RW	A flag to define where the alarm text shall be displayed $0=$ nowhere 1 = large digits 2 = small digits
2017	bit	RW	Show time symbol (0)
2018	bit	RW	Show ove

Display in idle mode
If enabled with address 1017(CP13), this screen is shown if no key is pressed for the time defined in

Address	Type	Contents
4000	Selection	```Contents of large digits: 0 = empty 1 = text string ON 2 = value group 1 (5001) 3 = setpoint group 1 (5004 or 5005 depending on occupied/unoccupied state) 4 = value group 2 (6001) 5 = setpoint group 2 (6004 or 6005 depending on occupied/unoccupied state) 6 = value group 3 (7001) 7 = setpoint group 3 (7004 or 7005 depending on occupied/unoccupied state) 8 = value group 4 (8001) 9 = setpoint group 4 (8004 or 8005 depending on occupied/unoccupied state) 10 = value group 5 (9001) 11 = setpoint group 5 (9004 or 9005 depending on occupied/unoccupied state) 12 = Clock 13 = Alarm text 14 = internal NTC 15 = external NTC 16 = humidity value 17 = digital input 1. 18 = digital input 2.```
4001	Selection	```Contents of small digits: 0= empty 1 = text string ON 2 = value group 1 (5001) 3 = setpoint group 1 (5004 or 5005 depending on occupied/unoccupied state) 4 = value group 2 (6001) 5 = setpoint group 2 (6004 or 6005 depending on occupied/unoccupied state) 6 = value group 3 (7001) 7 = setpoint group 3 (7004 or 7005 depending on occupied/unoccupied state) 8= value group 4 (8001) 9 = setpoint group 4 (8004 or 8005 depending on occupied/unoccupied state) 10 = value group 5 (9001) 11 = setpoint group 5 (9004 or 9005 depending on occupied/unoccupied state) 12 = Clock 13 = Alarm text 14 = internal NTC 15 = external NTC 16 = humidity value 17 = digital input 1. 18= digital input 2.```
4002	Selection	Contents of vertical bar: $0=$ empty $1=$ bar 1 $2=$ bar 2 $3=$ bar 3 $4=$ bar 4 $5=$ bar 5
4003	8bit (ASCII)	text string ON letter 1:
4004	$\begin{aligned} & \text { 8bit } \\ & \text { (ASCII) } \end{aligned}$	text string ON letter 2: 0
4005	8bit (ASCII)	text string ON letter 3: N
4006	8bit (ASCII)	text string ON letter 4:

Address	Type	RW	Contents	
5000	Selection	RW	Contents of large digits: $0=\text { empty }$ $=$ text string group 1 $2=$ value mode) 4 = Alarm text 5 = internal NTC 6 = external NTC $7=$ humidity value $9=$ digital input 2.	depending on operation
5001	${ }^{16 \text { bit }}$	RW	Value of large digits	
5002	Selection	RW	$\begin{gathered} \hline \text { Unit of digits } \\ 0=\text { do unit } \\ 1=\% \\ 2=\circ \\ 3=\mathrm{Ca} \end{gathered}$	
5003	Selection	RW		
5004	$\begin{aligned} & 16 \text { bit } \\ & \text { signed } \end{aligned}$	RW	Comfort setpoint x 10	
			Modbus value: 200	Display value: 20.0
5005	$\begin{aligned} & \hline 16 \text { bit } \\ & \text { signed } \end{aligned}$	RW	Standby setpoint $\times 10$	
			Modbus value: 200 Display value: 20.0 Setooinstep $\times 10$	
5006	$\begin{aligned} & 16 \text { bit } \\ & \text { signed } \end{aligned}$	RW		
			Modbus value: 1, 5, 10, 20, 50	Display value: $0.1,0.5,1$, 2,5
5007	16 bitsigned	RW	Low setpoint limit x 10	
			Modbus value: 160	Display value: 16.0
5008	16 bitsigned	RW	High setpoint limit $\times 10$	
			Modbus value: 320	Display value: 32.0
5009	8 bit	RW	Vertical bar 0-100 in steps of 10	
			Modbus value: 10	Verrical bars: 1
5010	8bit (ASCII)	RW	Text string letter 1	
5011	8 bit (ASCII)	RW	Text string letter 2	L
5012	8bit (ASCII)	RW	Text string letter 3	P
5013	8bit (ASCII)	RW	Text string letter 4	1

Display group 2-5
As above with following addresses:
Group $2=6000-6013$
Group $3=7000-7013$
Group $4=8000-813$
Group $5=9000-9013$

Input contiguration			
Address	Type	RW	Contents
10000	bit	RW	Enable temperature input $0=$ sensor disabled 1 = Sensor enabled
10001	bit	R	$\begin{gathered} \text { Emror state of input } \\ 0=0 \\ 1=\text { error } \\ \hline \end{gathered}$
10002	16 bit	R	Measured temperature input value
10003	16 bit signed	RW	Internal temperature sensor programmable offset ($-12,7 \ldots12,7^{\circ} \mathrm{C}$)
10100	bit	RW	Humidity input enabled (for -H type only) 0 = sensor disabled 1 = Sensor enabled
10101	bit	${ }^{\text {R }}$	Error state of input (for -H type only) $0=0 \mathrm{~K}$ $1=$ error
10102	16 bit signed	R	Measured humididy input value (for - H type only)
10103	$\begin{aligned} & \begin{array}{l} \text { nigntit } \\ \text { signed } \end{array} \\ & \hline \text { sigd } \end{aligned}$	RW	Internal humidity sensor programmable offset (-12,7...0...12,7\%)
10200	selection	RW	Enable external temperature sensor $0=$ sensor disabled $1=$ Sensor enabled
10201	bit	RW	$\begin{gathered} \hline \text { Error state of input } \\ 0=0 \mathrm{k} \\ 1=\text { error } \\ \hline \end{gathered}$
10202	16 bit signed	R	Value of external temperature input
10203	16 bit signed	RW	External temperature sensor programmable offset ($12,7 \ldots 0 \ldots 12,7^{\circ} \mathrm{C}$)
10300	bit	RW	Digital input " 1 " function: 0 : Input in normal digital mode 1: Remote disable: Key card or Window contact 2: Occupied / Unoccupied changeover: Motion detector
10301	bit	R	Digital input 1 value
10302	byte	RW	Digital input 1 open character 01
10303	byte	RW	Digital input 1 open character 02
10304	byte	RW	Digital input 1 open character 03
10305	byte	RW	Digital input 1 open character 04
10306	byte	RW	Digital input 1 grounded character 01
10307	byte	RW	Digital input 1 grounded character 02
10308	byte	RW	Digital input 1 grounded character 03
10309	byte	RW	Digital input 1 grounded character 04
10400	bit	RW	Digital input 2 function: 0 : Input in normal digital mode 1: Remote disable: Key card or Window contact 2: Occupied / Unoccupied changeover: Motion detector
10401	bit	R	Digital input 2 value
10402	byte	RW	Digital input 2 open character 01
10403	byte	RW	Digital input 2 open character 02
10404	byte	RW	Digital input 2 open character 03
10405	byte	RW	Digital input 2 open character 04
10406	byte	RW	Digital input 2 grounded character 01
10407	byte	RW	Digital input 2 grounded character 02
10408	byte	RW	Digital input 2 grounded character 03
10409	byte	RW	Digital input 2 grounded character 04

$\rightarrow \quad \begin{aligned} & \text { Use Remote disable for key cards or window contacts. If the digital input ts opened the device will switch to } \\ & \text { OFF mode atter the delay defined with address } 1023 \text { (CP19) has expired. Closing the contact will switch the }\end{aligned}$ OFF mode atter the delay defined with address 1023 (CP19) h
device back on immediately. The delay is defined in seconds.
$\rightarrow \quad$ Use occupied/unoccupied changeover with key card switches and occupancy sensors. The device will be in occupied mode as long as the digital input is connected to signal ground. Once the input is opened it will
switch to unoccupied mode after the delay defined with address 1024 (CP20) has expired. The delay is switch to unoccupied
defined in minutes.

Fan strings			
Address	Type	R/W	Contents
11000	byte	RW	FAN string 0 character 1 ("A")
11001	byte	RW	FAN string 0 character 2 ("u")
11002	byte	RW	FAN string 0 character 3 ((t")
11003	byte	RW	FAN string 0 character 4 ("0")
11004	byte	RW	FAN string 1 character 1 ("F")
11005	byte	RW	FAN string 1 character 2 ("A")
11006	byte	RW	FAN string 1 character 3 ("N")
11007	byte	RW	FAN string 1 character 4 ("1")
11008	byte	RW	FAN string 2 character 1 ("F")
11009	byte	RW	FAN string 2 character 2 ("A")
11010	byte	RW	FAN string 2 character 3 ("N")
11011	byte	RW	FAN string 2 character 4 ("2")
11012	byte	RW	FAN string 3 character 1 ("F")
11013	byte	RW	FAN string 3 character 2 ("A")
11014	byte	RW	FAN string 3 character 3 ("N")
11015	byte	RW	FAN string 3 character 4 ("3")
11016	byte	RW	FAN string 4 character 1 ("")
11017	byte	RW	FAN string 4 character 2 ("O")
11018	byte	RW	FAN string 4 character 3 ("F")
11019	byte	RW	FAN string 4 character 4 ("F")

